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Abstract

Grafting is a surgery on Riemann surfaces introduced by Thurston� it con�
nects hyperbolic geometry and the theory of projective structures on sur�
faces� ��	
� ��
� We will discuss the space of projective structures in terms
of the Thurston�s geometric parametrization given by grafting� From this
approach we will prove that on any compact Riemann surface with genus
greater than � there exist innitely many projective structures with Fuch�
sian holonomy representations� In course of the proof it will turn out that
grafting is closely related to harmonic maps between surfaces�

�� Introduction

A projective structure �or a CP ��structure� on a surface is a coordi�
nate system modelled on the projective space CP � such that the tran�
sition maps are projective homeomorphisms �and hence the restriction
of elements of PSL���C��� For an oriented closed surface �g of genus
g � �� it is well known that the space of projective structures Pg on
�g is parametrized by the bundle of holomorphic quadratic di�erentials
on Riemann surfaces � � Qg � Tg over the Teichm	uller space� for each
projective structure on �g� taking the Schwarzian derivative of the de�
veloping map we have a quadratic di�erential which is holomorphic with
respect to the underlying complex structure of the projective structure�
As this parametrization is dealing with projective or complex analytic
mappings and manifolds� a lot of researches have been developed from
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the viewpoint of complex analysis� �As for this parametrization� see
Hejhal 
�� for example��
The connection between projective structures on surfaces and hyper�

bolic geometry was revealed by W� Thurston �unpublished�� He showed
that the space Pg of projective structures is parametrized by the prod�
uct of the Teichm	uller space and the space of measured laminations� His
idea is to see a projective structure as a structure obtained by bend�
ing a hyperbolic ��space in the hyperbolic �space along a measured
geodesic lamination� �Here� note that �H� � CP � where H� is a hy�
perbolic �space�� Bending along a measured geodesic lamination is in
some sense conjugate to the earthquake deformation along the lamina�
tion �see Epstein�Marden 
�� for details�� W� Thurston also de�ned a
surgery called grafting� which is an equivalent concept with bending�
In this paper� we will study projective structures and their under�

lying complex structures from this geometric viewpoint� Especially� we
will investigate the underlying complex structures of projective struc�
tures with discrete holonomy representations whose developing maps
are not covering maps� The existence of such projective structures was
shown by Maskit 
���� Hejhal 
�� and Goldman 
��� while it was un�
known on which complex structure such projective structures exist� We
will show that on any complex structure on �g there are in�nitely many
projective structures with Fuchsian holonomy representations� To prove
this fact� we will de�ne a mapping on the Teichm	uller space to itself by
grafting�
We will prove our results in Section  after describing bending� graft�

ing and the Thurston�s parametrization theorem in Section ��
In course of arguments� we will see that harmonic maps are involved

in the proofs� when we consider a projective structure as a bent hyper�
bolic structure� the bent surface is a generalization of a pleated surface
for the holonomy representation� which is not necessarily discrete �see
Section ��� In fact� when the holonomy representation is discrete� the
bent surface is a pleated surface of the quotient �manifold� On the
other hand� pleated surfaces in hyperbolic �manifolds are the limits
of the images of harmonic maps �See Minsky 
��� and Thurston 
�����
We will see that the inverse of bending can be seen as mappings from
Riemann surfaces to the generalized pleated surfaces� so that grafting is
naturally related to harmonic maps� in view of 
��� �see Remark � after
Theorem ����
The author would like to thank Curt McMullen for his considerable

help and encouragement through this project� Most of this work was
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done at Mathematical Sciences Research Institute� where the author
enjoyed various help by many people� Especially� she is very grateful
to Michael Kapovich to whom she owes a lot on the proof of the local
injectivity of grafting� to William Thurston for his inspiring explana�
tion on the geometric parametrization of projective structures� and to
Michael Wolf for useful and enjoyable discussions on harmonic maps
and the theory of measured laminations�

�� Bending� grafting and geometric parametrization of

projective structures

In this section we sketch Thurston�s geometric parametrization theo�
rem� This geometric description of projective structures is given by two
equivalent concepts� bending or grafting� which we will describe in this
section� A bent surface plays a role similar to that of pleated surfaces
for hyperbolic �manifolds� Roughly speaking� bending is the way to
see a projective structure as a hyperbolic structure bent in the hyper�
bolic �space� and grafting is the observation of bending on the sphere
at in�nity�

���� Thurston metric

We begin with a metric introduced by Thurston which is a powerful tool
to understand projective structures�

Recall that every complex structure on a compact oriented surface
�g of genus g admits a unique hyperbolic structure� This fact provides
two di�erent approaches for Teichm	uller theory� the Teichm	uller space
Tg is the space of complex structures and� at the same time� the space of
hyperbolic structures on a compact surface �g� Now� for any complex
structure X � Tg the set of projective structures on X are parametrized
by the space of holomorphic quadratic di�erentials on X � which is a
�g � ��dimensional complex vector space� As the complex structures
under these projective structures are all the same� the hyperbolic metric
does not distinguish them� The metric structure which characterizes a
projective structure is de�ned by a very natural analogue of the de�ni�
tion of hyperbolic metrics�

De�nition ��� �Thurston �pseudo��metric�� LetM be aCP ��
manifold� For each point x � M and each tangent vector v � TxM �
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de�ne the length of the vector v by

tM�v� � inf
f ���M

���f
�v��

where the in�mum is taken over all projective immersions f � � � M
with f��� � x� and �� is the hyperbolic metric on the unit disc
� � fz � C� jzj � �g� We will call the pseudometric tM the Thurston
pseudometric on M � If tM is non�degenerate it will be called the
Thurston metric�

Recall that the Kobayashi metric on a Riemann surface� which coin�
cides with the hyperbolic metric if non�degenerate� is de�ned by taking
the in�mum over all holomorphic immersions� �See 
���� The following
properties are immediate consequences from the de�nitions of Thurston
metric and Kobayashi hyperbolic metric�

Proposition ���� For a CP ��manifold M � let kM denote the
Kobayashi pseudo�metric on M � Then the following hold�

��� tM � kM �

��� If these metrics are non�degenerate on M and coincide at a non�
zero tangent vector v� then these two metrics coincide on the entire
tangent space TM �

��� For the projective universal covering space �M of M � t �M descends

to tM via the projective universal covering map �M �M �

�	� If tM �v� �� � for a vector v � TzM at a point z � M � then there
is a projective mapping f � � � M that attains the minimum
in the de
nition of tM �v�� and the mapping f is determined by z
uniquely up to precomposition of automorphisms of ��

In the following� we assume that the underlying complex structure
of the CP ��manifold M is hyperbolic� hence tM does not degenerate�
For convenience� we consider the Thurston metric on the universal

projective covering space �M rather than on M � as any extremal map�
ping f � � � �M which realizes the Thurston metric at z � �M is an
embedding�
For each point z � �M the image f��� by an extremal mapping f

is a disc determined uniquely by z� �Note that the terminology �discs�
makes sense in CP ��manifolds�� This disc is called the maximal disc
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for z� Let Dz denote the maximal disc for z � �M � Take a projective
mapping f on the upper half plane to �M realizing the Thurston metric
at z� and identify Dz with the upper half plane model of the hyperbolic
��space H� via f � Then we can compactify Dz with the circle at in�nity
R � f�g of H�� Let � � �Dz be a boundary point� If the mapping
f � H� � �M can be extended as a projective map beyond �� then � is
identi�ed with a point in the frontier of Dz in �M � otherwise� we call � an
ideal boundary point� Denote the set of all ideal boundary points of Dz

by ��Dz � Take the convex hull of ��Dz with respect to the hyperbolic
metric of Dz�� H��� and denote it by C���Dz�� It is easy to see that
��Dz consists of at least � points� z can not be disjoint from C���Dz�
the de�nition of the maximal disc� and there are three cases as follows
�see Figure �� �

�i� ��Dz contains at least three points� and z is in the interior of
C���Dz��

�ii� ��Dz contains at least three points� and z is in the frontier of
C���Dz� in Dz �

�iii� ��Dz consists of two points� and z � C���Dz��

Figure �� z is in the convex hull of C���Dz�

We may assume that � and � are ideal boundary points� and z is
on the imaginary axis� In the �rst case� the Thurston metric coincides
with the hyperbolic metric jdzj�Im z �on the upper half plane model of
Dz� near z�
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In the third case� Thurston metric at z is equal to the �at metric
jdzj�jzj� In the second case� the hyperbolic metric and the �at metric
coincide on the imaginary axis�

It is easy to see that �M is decomposed into the union of hyperbolic
pieces and �at lines by the convex hulls of ideal boundary points set
C���Dz� of maximal discs Dz�

Example ���� Let M � �M be the union of two discs D and
D� intersecting with angle � � 
�� �� �Figure ��� For convenience� we
employ the model such that the two intersecting points are � and ��
Let S be the sector bounded by the ray perpendicular to �D and the
ray perpendicular to �D�� It is easy to see that for z � S the maximal
disc for z is the half plane with boundary orthogonal to the ray through
z starting at �� In this case the Thurston metric is equal to jdzj�jzj on
the ray� If z is outside of S and contained in D �resp� D��� then the
maximal disc for z is D �resp� D��� and the Thurston metric near z
coincides with the hyperbolic metric on D �resp� D���

Therefore� Thurston metric is hyperbolic in D� S and D� � S� and
is �at in S�

Figure �� A projective surface consists of hyperbolic
pieces and �at pieces

Note that in fact � can be any positive number� if � � �� we distin�
guish each sheet over the overwrapping region by regarding the surface
as f�rei�� �� � C�R � r �� �� � � � � �g�



grafting� harmonic maps and projective structures �	�

���� Bending a hyperbolic surface in H�

Next� we shall see that projective structures are obtained by bending
the hyperbolic ��space H� in a locally convex way in the hyperbolic
�space H�� In what follows� we will denote by CH�E� the convex hull
of a subset E in H� � CP �� where CP � is considered as a sphere at
in�nity of H�� to avoid mixing up the convex hull in H� with that in
H��

We begin with a simple example� We will consider the Riemann
sphere as the sphere at in�nity of the hyperbolic space H�� Let D
be a disc in the Riemann sphere� The convex hull CH�D� of D in
H� is the half space bounded by the hyperbolic plane CH��D�� The
nearest point projection D � CH��D� sends the hyperbolic structure
of D to the hyperbolic structure of CH��D�� �Namely� for each point
z � D� there is a unique horosphere at z which is tangent to CH��D��
Map each z to the tangent point�� On the other hand� the hyperbolic
structure of D coincides with the projective structure as a domain of
CP�� Hence in this case the projective structure on D is given by the
hyperbolic surface CH��D� in H� with nearest point projection�

Now� take a geodesic line l � CH��D�� �x an orientation of l and
denote the left �resp� right� part of CH��D�� l by �� �resp� ���� Take
a positive number � �for simplicity� we temporarily assume that � � ��
and rotate �� along l by angle �� Then we have a pleated surface R as
in Figure �

Figure �� Bending a hyperbolic surface in the hyperbolic �
space H� by angle � produces a sector S with angle
� on the sphere at in�nity� which is a Euclidean piece
of the projective surface � � D �D��
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We will call this procedure bending the hyperbolic surface CH��D�
along l�
Now let us see what happens in the sphere at in�nity when we bend

CH��D� along l� �Roughly speaking� we get a new projective surface by
pushing the bent surface down to the sphere at in�nity via the nearest
point projection��
As we bend CH��D� in H� along l� CH��D� splits into two totally

geodesic pieces� which are the images of �� and ��� We denote the
images by the same symbols �� and ��� For each of them� there is a
unique circle on the sphere at in�nity whose convex hull in H� contains
the piece� For ��� the circle is the boundary of D� For ��� the circle
bounds the disc D� intersecting with D at the endpoints of l with angle
�� Therefore� when we bend CH��D� in H� along l with angle �� the
original projective surface D turns into the domain � � D �D�� This
domain � has a projective structure as a domain of the projective surface
CP �� which we observed in Example ���
We can reconstruct the pleated surface R from � in the following

way �
���� Remember that we saw in Section ��� that for each z � �
there is a unique maximal disc Dz � For each z � �� take the convex
hull of the circle �Dz in H

�� Then send each point in the convex hull
C���Dz� �de�ned in Section ���� of ��Dz in the hyperbolic surface
Dz by the nearest point projection to the convex hull of ��Dz in H��
Recall that we saw in Example �� that � is decomposed into hyperbolic
pieces D � S and D� � S and a �at piece S with respect to Thurston
metric t�� Then by the nearest point projection� D � S �resp� D� � S�
is mapped to �� �resp� ��� isometrically� As for the sector S� each
�at line connecting � and � is mapped to l isometrically� Thus the
image of � is the pleated surface R� and the above mapping � � R is
the inverse of the procedure getting the projective structure � from the
pleated surface R�
Thus the procedure bending CH��D� in H� along a geodesic is

equivalent to �grafting� a �at part S into the hyperbolic structure on D�
As before� note that we do not have to restrict � to be smaller than

�� if � � �� distinguish overwrapping sheets�
Now we proceed to the case with a group action� Let � be a co�

compact Fuchsian group acting on H�� Embed H� in H� as a totally
geodesic surface� Let X denote the hyperbolic surface H���� Take a
simple closed geodesic curve � on X � The lift of � onH� is a ��invariant
set of geodesic lines� We can bend H� along each of these geodesics
with angle � step by step �see Epstein�Marden 
���� In each step� on the
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sphere at in�nity� we have a new projective surface with a grafted part
to the preceding step� as we did in the preceding example� �In each step
distinguish the overwrapping sheets� if any� as we did in Example ����
Then we end up with a simply connected projective manifold �M spread
over the sphere at in�nity� which is partly hyperbolic and partly �at�

In view of the construction of �M � it is easy to see that there is a
projective automorphism group �� acting on �M isomorphic to �� Hence
in particular� �M��� is homeomorphic toX � To consider �M as spread over
the Riemann sphere as above is to map �M to CP � via the developing
map and we have the holonomy representation 	 � � � PSL���C�� In
fact� it is easy to see �� � 	�P �
 Then the above bending procedure
is given by an equivariant map from H� to H� with respect to � and
the holonomy representation which is bent along the bending locus and
isometric elsewhere�

Indeed� it is known that we can write down the holonomy represen�
tation 	 � �� PSL���C� in terms of bending� �We omit the formulae�
See 
�� Chapter � for details� There� the homomorphism is called the
quakebend homomorphism��

It is also known that when the weighted simple closed curves con�
verge to a measured lamination in the space of measured laminations�
the equivariant maps converge to the equivariant map� bent along the
measured lamination� which de�nes the corresponding projective struc�
ture�

See Epstein�Marden 
�� for details�

���� Grafting along a simple closed curve

Grafting is the way to see the above procedure directly on the quotient
surfaces X � H� �� and M � �M��� as in the following way�

We provide two types of CP ��manifolds which we will paste to�
gether� Let X and � be as in Section ���� First� take the lower half
plane model of H� such that the geodesic line fiy� y � �g is one of the
component of the lift of �� Let g�z� � el���z be the generator of the
stabilizer of fiy� y � �g in �� where l��� denotes the hyperbolic length
of � on X � Next� take the sector fz � rei�� � � r � �� � 	 � 	 �g
equipped with the projective structure as a domain of CP � �with no
restrictions on ��� The group � g � generated by g acts on this sector
as a projective automorphism� Taking the quotient we get a �at annulus
A� with height � and circumference l����

Now we cut X along �� and paste each side of � to one of the
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boundary component of A� as Figure �� in such a way that the length
parameters of pasting sides match� and that the pair of points which
is identi�ed in X are connected by segments in A� orthogonal to the
boundary�

Figure �� grafting a �at annulus of height � to X along �

Note that the hyperbolic structure ofX and the projective structure
of A� match on the pasting locus� Therefore� the above pasting process
yields a new CP��structure on �g preserving the original projective
structures of X and A�� We call this surgery grafting a �at annulus
of height � to X along �� or grafting �� to X � and denote the resulted
CP ��structure by Gr���X��

Note that the metrics on the hyperbolic surface X and the �at annu�
lus A� also match on the pasting locus and the resulted surface Gr���X�
is equipped with a metric which is partly hyperbolic and partly �at� It is
easy to see that this metric is equal to the Thurston metric on Gr���X��
It follows that the underlying complex structure of Gr���X� di�ers from
X by Proposition ��� ���� unless � � ��

It is also easy to see that this projective structure Gr���X� has a
projective universal covering space �M � which we obtained by bending
in Section ����

���� grafting a general measured lamination and the parametrization

theorem

Let Pg denote the set of all projective structures on the oriented closed
surface �g of genus g� Then as we have seen above� the grafting opera�
tion gives a mapping

Gr � Tg �R� � S � Pg�
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which sends each �X� �� �� � Tg � R��S to the projective structure
obtained by grafting a �at annulus of height � along the hyperbolic
geodesic in the homotopy class of � to the hyperbolic surface X � where
S denotes the set of homotopy classes of simple closed curves� Now we
can state Thurston�s parametrization theorem�

Theorem ��	 �Thurston�� The map Gr extends to a homeomor�
phism of Tg �ML onto Pg� where ML denotes the space of measured
laminations on �g�

Sketch of the proof� We have already seen that for any measured
lamination � � �� supported on a simple closed curve � and for any
hyperbolic structure X � Tg� grafting an annulus with height � yields a
projective structure� Recall that R� �S is a dense subset ofML� The
mapping Gr � Tg�R� �S � Pg is continuously extended to Tg�ML�
as bending is de�ned for any measured lamination and depends on the
lamination continuously� �See 
�� for details��
We shall describe the inverse correspondence� Pg � Tg �ML� By

the arguments in the preceding sections� it su ces to show that any pro�
jective structure on �g is obtained from the bending procedure de�ned
with an equivariant map H� � H�� bent along a measured lamination
and isometric elsewhere�

Given a projective structure on �g� take its projective universal cov�
ering �M and �x its developing map� Begin with an open set U in �M
small enough so that the developing map restricted to U is homeomor�
phic� For each point z in U � take the maximal disc Dz for z and embed
it into the Riemann sphere via the developing map� We identify Dz with
its image� Then take the convex hull of the circle �Dz in H� and denote
it by Rz� Rz is a totally geodesic disc isometric to Dz with respect to
the hyperbolic metrics on them via the nearest point projection� Now�
as in Section ���� take the convex hull C���Dz� of the ideal boundary
points of Dz� Then as we did in Section ��� for the simple case without
group action� send C���Dz� into Rz via the nearest point projection
between Rz and Dz � Denote the image of C���Dz� by Pz � If C���Dz�
is of the type �i� in Section ���� then Pz is a convex domain of Rz which
is the convex hull of ��Dz in H

�� If ��Dz is of the type �iii�� then Pz
is the hyperbolic line in Rz connecting the two points in C���Dz�� In
any case� Pz � Pz� for every z� � C���Dz�� Now� �z�UPz is a piece
of a pleated surface in H�� there are a subset V of H� and a mapping
from V to �z�UPz 
 H�� such that for each point w � V there is a
straight line in V which is mapped isometrically to a hyperbolic line
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in H�� This piece of pleated surface de�nes locally the bending which
gives the projective structure of �z�UDz� �Here� �z�UDz is equipped
with the projective structure as a domain of �M ��
Beginning with U and continuing this procedure� it is easy to get

an equivariant mapping H� to H�� de�ning the bending which produce
the projective surface �M � See 
�� for details�

�� Grafted structures on surfaces

Now� we are ready to discuss projective structures in terms of the
geometric parametrization� Given a measured lamination �� let gr��X�
stand for the underlying complex structure of the projective structure
Gr��X� for X � Tg� For any �xed �� this assignment gives a mapping
gr� � Tg � Tg� We shall call this mapping the grafting map de
ned by
��
First� we recall some facts about projective structures with Fuchsian

holonomy representations� On any complex structure X � Tg there is
a unique projective structure whose projective universal covering space
is projectively equivalent to the hyperbolic ��space H�� namely� the
hyperbolic structure� The holonomy representation of this projective
structure is a Fuchsian group � acting on H� with quotient manifold
X � H���� An �exotic� projective structure with Fuchsian holonomy
representation whose developing map is not a covering map was �rst
constructed by Maskit 
���� Hejhal 
�� and Goldman 
�� made more
topological and geometric approach to such projective structures� The
following characterization of projective structures with Fuchsian holon�
omy representations was given by Goldman�

Theorem ��� �Goldman 
	��� A projective structure given by
�X� �� � Tg �ML has a Fuchsian holonomy representation if and only
if � is an integral point of ML� Here� a measured lamination � is called
an integral point if it is of the form � �

P
��mi�i with a disjoint union

of nontrivial simple closed geodesics f�ig and a set of positive integers
fmig�

Note that given a projective structure determined by a pair �X� �� �
Tg �ML� the underlying complex structure of Gr��X� is hardly ex�
pressed by X and �� unless � � �� So far� in particular� it is unclear on
which complex structures there exist projective structures with Fuchsian
holonomy representations other than the hyperbolic structures� Our
main result shows that on any complex structure and any integral point
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� � ML there is a unique projective structure with Fuchsian holon�
omy representation which is obtained by grafting � to some hyperbolic
structure X � Tg�

Theorem ���� For any integral point � � ML� the grafting map
gr� � Tg � Tg is a real analytic homeomorphism�

Before proving this theorem� let us interpret it in terms of the
parametrization of Pg �the space of projective structures� by the bundle
of holomorphic quadratic di�erentials on Riemann surfaces � � Qg � Tg�
This parametrization is given in the following way� for each projective
structure� take the Schwarzian derivative of the developing map� where
the Schwarzian derivative of a locally univalent meromorphic function f
is de�ned by �f ���f ����������f ���f ���� Then the Schwarzian derivative is
a quadratic di�erential on the surface which is holomorphic with respect
to the complex structure under the projective structure� �See Hejhal

��� for example� for details�� The canonical projection � � Qg � Tg
sends each projective structure to its underlying complex structure� Let
K 
 Qg be the set of projective structures with discrete holonomy rep�
resentations� For X � Tg� let Q�X� and K�X� denote the �bers over
X of � � Qg � Tg and �jK � K � Tg respectively� For every X � Tg�
the interior point set intK�X� has a component containing �� which
coincides with the Bers slice� Theorem �� implies the existence of com�
ponents of intK�X� other than the Bers slice�

Corollary ���� On any complex structure X � Tg� there are in�

nitely many components of intK�X��

Proof of Corollary ���� Fix an integral point � � ML and a
hyperbolic structure X �� The projective structure Gr��X

�� has a Fuch�
sian holonomy group �� such that X � is holomorphically equivalent to
H���� �see 
����� For any Beltrami di�erential  for �� on the Riemann
sphere !C� we can take a quasiconformal deformation of the projective
structure Gr��X �� by  �cf� 
���� let f � denote the quasiconformal

homeomorphism of !C with Beltrami di�erential  �xing �� � and ��
Then �� � f � � � � �f � ��� is a M	obius transformation for every � � ��

and �� � f ����f ���� is a quasifuchsian group� As �� � f � � f � � �� we
have another projective structure by replacing the local coordinate sys�
tem f�U� ��g of Gr��X

�� to f�U� f � � ��g with holonomy representation
�� � It is easy to see that this new projective structure depends only
on the equivalence class of  �cf� 
���� Therefore� we have an open set
QF ��� of K consisting of all quasiconformal deformations of Gr��X

���
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Note that if �� is a Fuchsian group� the projective structure de�ned by
the quasiconformal deformation of Gr��X

�� with  is equal to the pro�
jective structure Gr��X

��� where X� is the hyperbolic surface obtained
by the quasiconformal deformation of X � with the Beltrami di�erential
 � Hence by Theorem �� the restriction �jQF ��� � QF ��� � Tg is
surjective for each integral point � � ML� Therefore� the corollary
follows if we show QF ��� � QF ��� �  for any two di�erent integral
points � and �� To see this� take the inverse image of the limit set
R�� of �� via the developing map on the universal cover of the CP ��
manifold Gr��X

��� Then the inverse image descends to a disjoint union
of curves on Gr��X ��� If the integral point � is of the form � �

P
�ni��i

for integers fnig and simple closed curves f�ig� then the inverse im�
age of the limit set of �� descends to the union of �ni curves each of
which is homotopic to �i� On the other hand� it is easy to see that any
quasiconformal deformation of the projective structure Gr��X

�� maps
this system of curves quasiconformally �the image depends only on the
equivalence class of the Beltrami di�erential�� Therefore� the homo�
topy class of these system of curves characterizes the open set QF ����
Hence QF ��� � QF ��� �  for any two di�erent integral points � and
�� q�e�d�

Remark� It was shown by Maskit 
��� that there exists some
X such that intK�X� �the interior of K�X� in Q�X�� has some com�
ponents other than the Bers slice� In 
�� we discussed on intK�X�
for such X �i�e�� assuming the existence of such components on X��
where we showed that any component of intK�X� is a component of
QF ��� �Q�X� for an integral point � � ML� What we have shown in
the above corollary is that QF ��� � Q�X� is a non�empty open set for
every complex structure X and every integral point ��

Proof of Theorem ���� To prove Theorem ��� it su ces to show the
following for an integral point ��

��� gr� � Tg � Tg is a proper mapping�

��� gr� � Tg � Tg is a local di�eomorphism� and

�� gr� � Tg � Tg is real analytic�

Proof of ���� The following theorem enables us to show that for any
measured lamination � �not necessarily an integral point�� the grafting
map gr� � Tg � Tg is a proper map�
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Theorem ��	� Let X be a hyperbolic surface and � be a measured
lamination� Let h � gr��X�� X denote the harmonic map with respect
to the hyperbolic metric on X and E�h� be its energy� �Remember that
the harmonic map between surfaces depends on the metric on the target
surface but only on the conformal structure on the source surface�� Then

�

�
lX��� 	

�

�

lX���
�

Egr��X����
	 E�h� 	

�

�
lX��� � ���g� ���

where lX��� is the hyperbolic length of � on X� and Egr��X���� is the
extremal length of � on the grafted surface gr��X��

Proof of Theorem ��	� For simplicity� we abbreviate Y � gr��X��
First� assume that � is supported on a simple closed curve� so that
� � ��� Then the projective structure Gr��X� consists of hyperbolic
piece�s� whose union is identi�ed with X and a �at annulus A� � We will
use this geometric structure on Y � We de�ne a mapping f � Y � X
by collapsing the annulus A� to the geodesic curve � on the hyperbolic
surface X along the �at structure �i�e�� translating each point of A� to
� along the segment perpendicular to �� and sending the hyperbolic
pieces of Y isometrically on the corresponding domains on X � Then f
is among the competitive mappings for the harmonic map h � Y � X �
As f is isometric on the hyperbolic pieces� the contribution of this part
for the total energy is the hyperbolic area of X � On the �at annulus
A� � the direction parallel to the geodesic � and the direction of the
segment orthogonal to � form an orthogonal frame in A� � The length
of the former direction is preserved by f � while the image of the latter
direction degenerates� Therefore� the contribution to the total energy
of the �at part is ������lX��� � �����lX���� Hence we have

E�h� 	 E�f� 	
�

�
lX��� � ���g � ��


On the other hand� by the left part of Minsky�s inequality 
��� Theorem
�����

�

�

lX���
�

EY ���
	 E�h�


Note that the extremal length of � in Y is not greater than that in A� �
that is� lX������ It follows that

�

�
lX��� �

�

�
�lX��� �

�

�

lX����

lX�����
	
�

�

lX����

EY ���
�
�

�

lX����

EY ���
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We have shown the inequality in the statement of Theorem �� for the
case � is supported on a simple closed curve� For a general measured
lamination� we approximate � by a sequence of measured laminations
each of which is supported on a simple closed curve� The inequality
follows from the continuity of the hyperbolic length of measured lami�
nations on X and the continuity of grafting with respect to measured
laminations� q�e�d�

Now we prove the properness of gr� � Tg � Tg from Theorem ���
When a sequence of points in Tg leaves any compact set eventually�
we will say �the sequence tends to in�nity� for simplicity� We have to
show for any sequence fXng tending to in�nity the image fgr��Xn�g
also tends to in�nity� Denote Yn � gr��Xn� for simplicity� By taking a
subsequence if necessary� we may assume that either

�i� supn lXn��� ��� or

�ii� limn�� lXn��� ��


In the case �i� we show that fYng tends to in�nity by contradiction�
Assume that fYng stays in a compact set of Tg� As Xn tends to in�nity�
the energy of the harmonic map hn � Yn � Xn tends to in�nity by a
result of M� Wolf 
��� Proposition ��� This contradicts the assumption
that lXn��� is uniformly bounded� considering the rightmost inequality
of Theorem ���
In the case �ii�� by Theorem ���

lim
n��

EYn��� � lim
n��

�lXn��� � O���� ��


Therefore� Yn tends to in�nity� q�e�d�

Remark � �Collapsing the grafted part is close to the har�
monic map�� In the above proof of Theorem ��� we showed that
the di�erence between the total energy of the annulus collapsing map
f � Y � X and that of the harmonic map h � Y � X is bounded
by a universal constant depending only on the genus g� Therefore� we
can say that f is close to the harmonic map when lX��� is large� as
the harmonic map between a pair of hyperbolic surfaces is unique by a
result of Hartman 
"�� Here we exhibit an intuitive explanation for this
phenomenon�
First� note that the grafted part occupies a large portion on the en�

tire surface when lX��� is very large� in view of the Thurston metric on
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Gr��X�� To collapse this large part likely results in �signi�cant stretch
in the direction along the curve�� In general� the direction of �maximal
stretch� of any kinds of extremal mappings �e�g� Teichm	uller mappings�
extremal Lipschitz maps� or harmonic maps� plays the key role in mea�
suring the di�erence between two surfaces� Kerckho� 
#� showed that
the Teichm	uller distance between two Riemann surfaces is described by
the ratio of the extremal lengths of the direction of maximal stretch
of the Teichm	uller mapping� Similar results are proved for Lipschitz
maps by Thurston 
�"�� and for harmonic maps� by Minsky 
��� and

���� Now� as for grafting� it is natural to pay attention to harmonic
maps to compare the grafted surface with the original surface for the
following reason�
Recall �see Section ���� that grafting a measured lamination � to a

hyperbolic surface X is equivalent to bending which is realized by the
equivariant map g � H� � H�� with respect to the Fuchsian group �
with H��� � X and the holonomy representation of Gr��X�� which is
bent along the lift of � and isometric elsewhere� This is a generalization
of a pleated surface for PSL���C��representation which is not necessarily
discrete�
Assume for a moment that the holonomy representation of the pro�

jective structure is discrete� Then this equivariant map actually de�
termines the pleated surface realizing the measured lamination � in
the quotient �manifold for the holonomy representation� On the other
hand� Thurston gave a remark in 
��� that realizing a measured lamina�
tion � in a hyperbolic �manifold is a �harmonic map� from 
�� � PML�
where PML is the Thurston boundary of Tg� �A rough explanation is
given in the following way� 
�� � PML is the limit of a degenerating
sequence fYng of hyperbolic structures which shrink in the direction �
as n��� Therefore� the harmonic mapping from Yn to a �xed hyper�
bolic �manifold stretchs along this direction � signi�cantly� From the
de�nition of the energy� the harmonic map from Yn sends this direction
� close to the realization of � in the �manifold� and the image is con�
tained in its convex core of the �manifold� Hence for large n the image
is close to a pleated surface with pleating locus ��� This intuitive claim
was justi�ed by Minsky 
���� a pleated surface is the limit �in a very
strong sense� of the images of the harmonic maps from surfaces whose
�maximal stretch direction� is the pleating locus� when the pleating locus
is complete�
Since collapsing the grafted part can be seen as a mapping from

the grafted surface to the pleated surface in the quotient �manifold� it
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is natural to expect that collapsing the grafted part is close to being
harmonic� when the grafted part is very large�
When the holonomy representation is not discrete� we can still think

of harmonic maps in the following way� as in Donaldson 
��� form a �at
H�� bundle de�ned by

H � H� �� H
� � Y�

where 	 is the holonomy representation� For a section s � Y � H
take the vertical part of its derivative� �Ds�x � TxY � Ts�x�Hx where
x is a point on Y and Hx is the �ber over x� De�ne the energy by
E�s� �

R
Y
jjDsjj�dV where dV is the volume form� A twisted harmonic

map is a critical point for the energy functional� Donaldson 
�� showed
the existence of the twisted harmonic map� In the same way� we can
also de�ne �pleated surfaces in the vertical direction of H�� which is
equivalent to considering the equivariant map realizing bending� From
the intuitive explanation of the relation between harmonic maps and
pleated surfaces for �manifolds� it is reasonable to expect similar things
to be true when the representation is not discrete�

Remark � �an alternative proof�� When � is supported on
a simple closed curve� we can show the properness of the grafting map
without using harmonic maps� In fact� when � is supported on a simple
closed curve� it is easy to see that in the case �i� the Teichm	uller distance
between Yn and Xn is bounded by a constant independent of n� In
the case �ii�� we can prove that EYn��� � lXn��� � O��� applying the
Thurston metric on Yn to the de�nition of the extremal length� for any ��
However� the author exhibited the proof using harmonic maps because
it gives a better geometric perspective and also because it seems �to
the author� that for the case �i� arguments by approximation would
not work to give a uniform constant to bound the Teichm	uller distance
between Yn and Xn for general measured laminations�

Remark � �properness with respect to ML�� Theorem ��
implies also that for a �xed hyperbolic surface X � the mapping gr��X� �
ML� Tg is proper�

We continue the proof of Theorem ��� Although the properness of
grafting map was proved for any measured lamination� we will assume
that � is an integral point ofML for the proofs of ��� and ���

Proof of ���� Here we use the parametrization of projective struc�
tures by Qg� i�e�� the space of quadratic di�erentials� We will observe
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how the �ber of Qg over each point Y � Tg� i�e�� the space of projective
structures on a �xed complex structure� is mapped by the holonomy
map� Let Rep � Hom����g�PSL���C���PSL���C� denote the space
of PSL���C��representations of ���g� and hol � Qg � Rep denote the
holonomy map� namely the mapping which sends each projective struc�
ture to its holonomy representation�

Let X � Tg be a hyperbolic surface� By the assumption that � is
an integral point� the holonomy representation of Gr��X� is a Fuchsian
group �X with quotient surface X � hence the holonomy representation
is in the space of real representations �namely� the equivalence class in
Rep with a representative in Hom����g�PSL���R�� which is denoted
by RepR� Now� let Y denote the complex structure under the pro�
jective structure Gr��X�� and Q�Y � be the space of projective struc�
tures on Y � i�e�� the �ber of Qg over Y � Tg� There is an element
� � Q�Y � corresponding to Gr��X�� Then hol�Q�Y �� intersects RepR
at hol��� � �X � By Faltings� theorem� �Faltings 
� Theorem ����� this
intersection is transversal� Therefore� at hol�Gr��X�� � �X � we can
take a basis fu�� 


� u�g��g of the �real� tangent space T�X�hol�Q�Y ���
and a basis fv�� 


� v�g��g of the �real� tangent space T�X�RepR� such
that fu�� 


� u�g��� v�� 


� v�g��g forms the basis of the tangent space
T�X �Rep�� Remember that hol is a local C

��di�eomorphism �Hejhal��
Therefore there is a neighborhood U of � in Qg and a neighborhood V
of �X in Rep such that holjU � U � V is a C��di�eomorphism� and the
inverse map g � V � U of holjU is well�de�ned� By the bundle structure
of Qg� we can take a neighborhood U � of Y in Tg such that the restric�
tion �j����U �� � ����U ��� U � is identi�ed with the product of U � with
R�g��� where � � Qg � Tg is the projection� Thus we may assume that
U is the product of U � and an open set of R�g��� Denote by � the point
of R�g�� such that � corresponds to �Y� �� � Tg�R

�g��� Then the tan�
gent space T�U is spanned by the �direction of the base space� TY Tg and
the �direction of the �ber� T�R

�g��� and the derivative dg maps T�Rep
onto T�Tg� Now� fdg�ui�gi���			��g�� is contained in the direction of �ber�
Therefore� none of the non�zero vectors in dg�T�XRepR� is contained in
the direction of �ber� It follows that d�� � g� � T�XRepR � TY Tg is
surjective� As we can identify the component of the space of real repre�
sentations containing �X with the Teichm	uller space� the composition
of the restriction gjRepR with � is equal to gr�� Therefore� gr� is locally
di�eomorphic at X � q�e�d�

Proof of ���� Let QF ��� be the set of projective structures ob�
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tained by quasiconformal deformations of a grafted projective structure
Gr��X�� Then QF ��� is identi�ed with the space of quasiconformal de�
formations of the holonomy representation of Gr��X�� which is a Fuch�
sian group �cf� 
���� Recall that Tg has a natural complex structure
and the space of quasiconformal deformations of the Fuchsian group
is identi�ed with the complex manifold Tg � Tg� With respect to this
identi�cation� the mapping $ � QF ��� � Tg which sends each projec�
tive structure in QF ��� to the underlying complex structure is holo�
morphic �cf� 
���� Now� in the space of quasiconformal deformations
of a Fuchsian group� the set of Fuchsian groups � which is identi�ed
with Tg� forms a real analytic submanifold� Therefore� the restriction
of $ � QF ���� Tg to this set of Fuchsian groups is real analytic� This
restriction is the same mapping as gr� � Tg � Tg� q�e�d�
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